Sunny outlook for solar paint
23 Apr 2008 by Evoluted New Media
Researchers at Swansea University are developing a new, eco-friendly technology that could generate as much electricity as 50 wind farms.
Researchers at Swansea University are developing a new, eco-friendly technology that could generate as much electricity as 50 wind farms.
Dr Dave Worsley (right) and Dr Trystan Watson of the Materials Research Centre at Swansea University, investigating the efficiency of new solar cells under a Dyesol Solar Simulator |
“We have been collaborating with the steel industry for decades,” said Dr Worsely, “but have tended to focus our attention on improving the long-term durability and corrosion-resistance of the steel. We haven’t really paid much attention to how we can make the outside of the steel capable of doing something other than looking good.
“One of our Engineering Doctorate students was researching how sunlight interacts with paint and degrades it, which led to us developing a new photovoltaic method of capturing solar energy.”
Unlike conventional solar cells, the materials being developed at Swansea are more efficient at capturing low light radiation, meaning that they are better suited to the British climate. Paint is applied to steel when it is passed through rollers during the manufacturing process, and it is hoped that the same approach can be used to build up layers of the solar cell system. The researchers’ aim is to produce cells that can be painted onto a flexible steel surface at a rate of 30-40m2 a minute.
Dr Worsley believes that the potential for the product is immense.
He said: “Corus Colours produces around 100 million square metres of steel building cladding a year. If this was treated with the photovoltaic material, and assuming a conservative 5% energy conversion rate, then we could be looking at generating 4,500 gigawatts of electricity through the solar cells annually. That’s the equivalent output of roughly 50 wind farms.”
Dr Worsley will be working closely with Corus to research practical, cost-efficient methods of mounting the system on steel structures, with a view to the eventual commercialisation of the product.