Robotic exoskeleton training expands options for stroke rehabilitation
2 Feb 2021
It must be hard enough to recover from an acute stroke, but many find the physical taxation of rehabilitation exercises incredibly challenging. Retraining the brain to drive the complex processes required to walk is a difficult process and conventional physical rehabilitation methods focus on the physical rather than the mental/physical link. Now, researchers have demonstrated that a wearable robot exoskeleton can promote active effort from the patient more readily, improving gait therapy outcomes.
Image: Researchers used the Ekso GT to deliver high-dose gait training during inpatient rehabilitation for acute stroke. Credit: With permission from Ekso Bionics, Inc.
A team of New Jersey researchers has demonstrated that high-dose therapy gait training using robotic exoskeletons may aid early rehabilitation for acute stroke.
The need for stroke rehabilitation is tremendous, given the large numbers of stroke survivors with deficits in mobility, balance and coordination that limit their activities of daily living. Advances in robotics and biomedical engineering are expanding the options for rehabilitative care. Researchers are applying new technologies to gait training that may offer advantages over traditional labour intensive physical therapy. This inpatient study of a robotic exoskeleton (Ekso GT, Ekso Bionics, Inc,) demonstrated the potential to improve gait training after acute stroke toward the goal of earlier recovery of motor function.
Participants included 44 individuals (ages 18 to 82 years) admitted to Kessler Institute for Rehabilitation for acute stroke. Half received conventional standard of care (SOC), and half received SOC with an option for overground gait training in the Ekso GT (RE+SOC). Both groups received the same amount of overall therapy time. Overground gait training in the exoskeleton was supervised by a licensed physical therapist who adjusted the variable bilateral assistance of the Ekso GT according to each individual's progress. Outcome measures were total distance walked during inpatient rehabilitation and functional independence measure (FIM) score. The RE-SOC group trained in the Ekso GT at least three times during their stay.
"We found that gait training in the exoskeleton allowed us to increase the dose of gait training without increasing the duration of inpatient rehabilitation," said Dr. Nolan, assistant director of the Center for Mobility and Rehabilitation Engineering Research at Kessler Foundation. "Because overground walking in the exoskeleton requires active effort on the part of the participant," she added, "early intervention with this type of gait training promotes brain plasticity that may lead to greater functional improvements and more lasting effects when combined with conventional training."
The article, "Robotic exoskeleton gait training during acute stroke inpatient rehabilitation" (doi: 10.339/fnbot.2020.581815), was published October 30, 2020 in Frontiers in Neurorobotics is available open access.
The authors are Karen Nolan, PhD, Kiran Karunakaran, PhD, and Kathleen Chervin, of Kessler Foundation, Michael Monfett, MD, of Skyline Physical Medicine and Rehabilitation, Radhika Bapineedu, MD, and Neil N. Jasey Jr, MD, of Kessler Institute for Rehabilitation, and Mooyeon Oh-Park, MD, of Burke Rehabilitation Hospital, formerly with Kessler. Drs. Nolan and Karunakaran are also affiliated with Children's Specialized Hospital. Kessler scientists and clinicians have faculty appointments at Rutgers New Jersey Medical School.